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Abstract---This paper is a Second-Law study of thermal insulation systems consisting of two l-dim. 
insulations in parallel. It isshown that the parallel-insulationmodel applies to power and refrigeration systems 
exposed to large absolute temperature ratios. The insulation design which conserves maximum exergy 
(available work) is determined for two classes of parallel-insulation systems: in one class, the two parallel 
insulations are cooled continuously by two streams, in the other class they are cooled partly (intermittently) by 
one stream of single-phase fluid. The study shows that, in contradiction to previously published results, the 

continuous-cooling method is thermodynamically superior to the partial-cooling method. 

NOMENCLATURE 

cross-sectional area normal to insulation heat 

current Q; 
specific heat at constant pressure; 
effective thermal conductivity of the l-dim. 
insulation ; 
insulation thickness (length of heat current 

path); 
coolant mass flowrate ; 
dimensionless flowrate, equation (7); 
entropy generation number, equation (8); 
number of heat transfer units of the 

counterflow heat exchanger ; 
cold-end heat current ; 
hot-end heat current; 
local value of heat current ; 
entropy generation rate [W K-l]; 
absolute temperature ; 
cold-end temperature; 
temperature of cross-over point (Fig. 6); 
hot-end temperature; 
fraction of coolant flowrate (Fig. 2); 
position along the l-dim. insulation (Fig. I). 

Greek symbols 
dimensionless cross-over location, equation 

5Z (13). 

Subscripts 
c.h.e., counterflow heat exchanger ; 
min, minimum ; 
opt, optimum ; 
( ),, pertaining to insulation no. 1; 
( )2, pertaining to insulation no. 2. 

INTRODUCTION 

THERMAL insulation systems occupy an important role 
in the engineering of energy ef’iicient systems for power 
and refrigeration. The importance of insulation 

t Visiting from the University of Stuttgart, West Germany. 

systems is enhanced in applications which face extreme 
absolute temperature ratios, for exampie, in advanced- 

cycle power plants and in cryogenic gas liquefaction 
installations. The traditional view in the design of 
thermal insulation systems is that these systems’ basic 
functionis toprevent(limit) the flow ofheat between the 

ambient and the heart of the apparatus to be insulated. 
An alternative, more comprehensive, way of viewing 
insulation systems is to recognize that they are steady 
dissipators of available work (exergy. availability), in 
other words, steady producers of entropy. This second 
view was proposed by one of the authors [l] who 
showed that the accounting for exergy destruction in 
insulation systems is the only avenue toward the design 
of truly ~thermodynamically) efiricient power and 
refrigeration systems. 

Thermal insulations owe their dissipative character 

to the thermodynamic irreversibility associated with 
heat transfer across finite temperature differences 121. 
Thus, in a l-dim. insulation of effective thermal 
conductance kA/L (Fig. t), the entropy generation rate 
is [l] 

7‘H 

Sgen = 
s 

(Q,P")dT (1) 
TC 

where TH, TC are the extreme temperatures and Q, is the 
heat current from T, to T,. As shown in the present 
treatment, the heat current Q, is, in generai, a function 
of position z along the insulation. The heat current 
function Q, depends on the amount of intermediate 
cooling provided to the insulation between z = 0 and 
z = L. In Fig. 1, the intermediate cooling effect is 

symboljzed by the single-phase stream tic, which cools 
theinsulation in countercurrent with the heat flow Q,, It 
has been shown that the destruction of exergy in the 
l-dim. insulation is minimized when the coolant 
flowrate is [l] 

f~cp)opl = @k/L) In (T,/T,). (2) 

PARALLEL INSULATION SYSTEMS 

The objective of this paper is to analyze the 
destruction of available work in parallel insulation 
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systems, as shown in Figs. 2 and 6. The parallel- 
insulation model recognizes the fact that in many 
power and refrigeration systems the insulation effect is 
provided by two separate installations. For example. in 
a helium liquefier we first distinguish an elaborate 
insulating layer which consists of radiation shields, 
evacuated space and low-heat-leak mechanical 
supports 131. The second, more subtle, insulation 

feature is the main counterflow (regenerative) heat 
exchanger which connects the room temperature 
compressor with the low temperature end of the 
liquefaction process [4].This heat exchanger leaks heat 
in the (hot end)--jcold end) direction, in the same sense 
as the l-dim. insulation sketched in Fig. 1. It has been 
shown that the equivalent end-to-end thermal 

conductance of a balanced counter-flow heat 

exchanger (c.h.e.) is [i] 

(k/l.‘l,), ,, c = iilC,,,,iV,,, i3) 

where tic,, is the capacity rate and N,,: the number 01 
heat transfer units. The end-to-end conductance 
decreasesas thestream-to-stream conductance(or ‘v,,,) 

increases. 
Counterflow heat exchangers play a thermal 

insulation function not only in cryogenic systems but 
also in advanced power cycles (e.g. the Brayton cycle 
with regenerative heat exchanger [_‘I), The analogy 
between counterflow heat exchangers and traditional 

insulations, equation (3). justifies the parallel- 

insulation model. employed in this study (Figs. 2 and 6). 
In this model. one insulation (k,, A,, I,,) represents the 
physical insulating layer (shields, vacuum, supports). 
while the second insulation (k2, A?. L.?) accounts for the 
role played by the counterflow heat exchanger. 

In what follows we consider the engineering question 
of how to minimize the destruction of exergy in a 
parallel insulation system. by properly using one 
stream of cooland, uilc,,. In the first part of the study we 
focus on the arrangement shown in Fig. 2, uherc 
fractions oftic,,,are in continuous thermal contact with 
each of the two insulations. In the second part we 
consider the method of Fig. 6 in which the available 
stream (kc,,) cools both insulations without being 

i:, T., 

T 

‘7,:” 
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In this expression, M, and M, are the dimensionless 

capacity rates corresponding to the two insulations, 

M, = (uizc,,L,)l(k,.4,), M, = (~c,Gl(k,A,). (7) 

It is convenient to express the entropy generation 
rate in dimensionless form also, by defining the entropy 
generation number iv, 

N, = (S,,,U,A,) = MICGIZJ- 11 

x [{[l -(TC/TH)eMIX]X/(eM’X- l)} 

+ CU -_(G/T,)e M2(1-X)](l _x)/(e”2(L-x)_ 1)1\] 

+M, In(T,/T,). @t 

The N, expression (8) is the object ofminimization. For 
a given absolute temperature ratio T,/T, and a given 
conductance ratio 

MI/M, = ~kA~~~~~~kAjL~~, (9) 

we must optimally select the two remaining 

parameters, the Row fraction x and the mass flowrate 
M, (or M2). The standard analytical method of setting 
equal to zero the partial derivatives, aN,/ax and 
(?N$liM,, yields two implicit equations. Since the 
solution to this system requires about the same 

numerical effort as searching for the N, minimum 
directly, we minimized N, by trial and error. 

The results of our N, minimization work are 
reported for T,/T, values of 10 and 100, which represent 
very well helium-cooled insulations. We varied the 
conductance ratio M~/~~ from 0.1 to 10, and 
determined the optimum x and M, for minimum N,. 
Figures 3 and 4 show the minimum entropy generation 
number Ns,,nin and the optimum flowrate number 
M l,Opt as functions of the insulation conductance ratio 
MJM,. Both N, and Ml scale with the thermal 
conductance of insulation no. 2. Since higher values of 
M~~~~~ correspond to more heat leaking into the 

system, Ns.,i, and MI ,OP, increase as M,/M, increases. 
Increasing the absolute temperature ratio T,/T, has the 

100 

N SMiN 

IO 

6,1 (I 

M, If% 
10.0 

FIG. 3. Minimum entropy generation numbers for continuous 
cooling (solid lines) and intermittent cooling (dashed lines) of 

parallel-insulation systems. 

M IOPT 

10 

FIG. 4. Optimum mass flowrates for continuous cooling (solid 
lines) and inte~ittent cooling (dashed lines) of paratlel- 

insulation systems. 

same effect. However, increasing this ratio from 10 to 

100 leads to an increase in Ns,min by only a factor of 
order 4 (instead of by a factor of 10 as in the case of 
insulations without lateral stream-cooling effect). 

The optimum flow fraction x was found to vary 

antisymmetrically with respect to log(M,/M,) = 0. 
This result has been plotted in Fig. 5. As we might have 
expected, the optimum fraction is x = 0.5 when parallel 
insulations are identical (Ml/M, = 1). When the two 

insulations differ drastically, the one with the higher 
therma conductance demands most of the coolant 
supply. It can be shown analytically (based on aN,/dx 

= aNs/aMl = 0) that the optimum x is also a function 
of the temperature ratio TH/Tc. This dependence, 
however, is too weak to become visible in Fig. 5. 

SINGLE-STREAM I~TERMI~ENT COOLING 

A parallel-insulation system of superior technical 

simplicity is shown in Fig. 6. This system employs only 

1.0 
TM/T, =:O, =I00 

X OPT 

0 I 
0.1 1.0 16 

VIM, 

I.0 

FIG. 5. Optimum flow fraction vs support conductance ratio 
for parallel continuous cooling scheme. 
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The entropy generation number :V\ iN defined as in the 
preceding section [cyuation (S)]. 

The cross-over temperature ii.,< ~ppeari~~g gn 
equation (161 may be eliminated hard on the following 
condition of heat current continult>. Considering 
insulation no. I. the constant heat current throuph rhe 
uncooled part. t)!,,. must be equal ii) rhc heat current 
into the upper end of its cooled part. Thcrcforc. SLC* mitt: 
write 

FIG. 6. Schemarioofparallel insulation system partly cooled by 
one stream. 

one stream (tic,) which comes in contact with the lower 

part of insulation no. 1 up to a thickness 3 = ;,. and 
with the upper part of insulation no. 2 from I = z2 to :: 

= L,. The stream temperature at the cross-over point is 
7&. The stream comes in contact with insulation no. 2 
at the point where theinsulationtemperatureiscqual to 
7& : this cross-over design is the most reasonabie(least 
irreversible). 

The total rate ofentropy generation of this system is, 

sp’” = (dQiT)+(Qcl’7;-)-(Q,,i’f,,) 

‘1.2 

+ 

/ 

(dQiT)+(Q,,.:7;.)-(QnZi7") (IO) 
, ::: 

where the heat current terminology has been defined in 
Fig. 6. It can easily be shown that the heat currents at 
the stream-c(~olcd ends of the two insulations are given 

by 

Qc, = k:,Tci[(7&;‘Tc)- l]/(e”tri - I)). (! I) 

where 

are the dimensionless cross-over locations. As in the 
preceding section, M, and M, are the mass ilow 

numbers defined in equation (7). The heat currents at 
the two uncooled ends of the insulations are given by 

Q,,, = 7~(li,~l,,:L,)/[l--(~,~7;,)]/(1-~;,)~. (14) 

Introducing equations (11 )i_ 15) into equation ( lo), and 
p~rformjng the integrals in equation (lo), yields, after 
some algebra, 

N,s = MI [(-i&Y;.)- 11 

x ([li(e”“‘-l)]+[l/(M~~~)l) 

The same condition applied to insulation no. 7 yicids 

Eliminating 7&‘7;. between equations (18) anti ( 19) 
leads to an implicit relationship between the cross-o\ et 
locations of the two insulations 

The temperature ratio 7,,,‘7;. and the conductarxx 
ratio .hl r/1\42 are known. Conscquentlq. equations (16). 
(18) and (20) enable us to calculate the zntrop) 
generation number as a function of two independent 
parameters 6, and ‘M,. The minimum entropy 
generatio number was determined uumcricaily I?! 
trial and error. Figures 3 and 4 show -t’v,;,,,i, and A+, “i,, 
as functions of M,/M, and Tb,‘&.. AS in the system 01 
Fig. 2, higher values of M , hf L and Y;,) 7; lead to higher 
values of N,s,,ni,, and M , _c>p,. The optimum cross-i)\er 

locations < , and & are rcportcd in Figs. 7 and 8 : in these 

I.!3 r- _- .._. _ .---_--_..i 

I.. 
i _I,\ : 

Ff(i. 7. Optimum cross-over locations ys support conductancr 
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M, /M, 

FIG. 8. Optimum cross-over locations vs support conductance 
ratio (Y.&/T, = 100). 

figures the arithmetic mean of (I and t2 shows an 
antisymmetric variation relative to log(~~~~*) = 0. If 
insulation no. 2 houses the dominant heat leak, i.e. if 
M, K htil, then itmust becooled o~~ermostofits~e~gth. 
The reduced cross-over tenlperature T&‘Tcis shown in 
Fig. 9 as a function of M,/M, and T&/T,, 

In contrast to the fractianed-flow system considered 
earlier, the temperature ratio T&/&has a sizeableeffect. 
Figures 7 and 8 show that the greater the ratio TH/Tc, 
the greater the displacement between cross-over 
locations, t2--t1. Note that the difference t2-t1 is 
always positive, because the upper-section temperature 
gradient is greater in a stream-cooled section than in an 
uncooIed section. This elTect is shown in Fig. 10, which 
is a qualitativesketch ofthe temperatured~stribution in 
two paralicl insulations of the same length. 

DISCUSSION 

We are now in a position to assess the relative 
thermodynamicmeritoftheparallel-insulationdesigns 
proposed in Figs. 2 and 6. Both designs have been 
optimized thermodynamically by determjning the 
operating conditions which insure minimum destruc- 

TEMPERATURE 
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IO 
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FIG. 9. Optimum cross-over temperature vs support 
conductance ratio. 

tion of exergy in the given system. Figure 3 shows that 
the singb-stream system (Fig. 6) is thermodynamically 
inferior to the two-stream system (Fig. 2). The difference 
between the minimum entropy generation numbers 
increases as the temperature ratio TdTc increases. 
Therefore, the two-stream arrangement is particularly 
desirable in helium cryogenic systems, where the 
tem~rature ratio is of order 100. 

The optimum cooling requirements for the two 
cooling methods are summarized in Fig. 4. This 
summary shows that in the (T,TL)-(MI/MZ) range 
considered in our study, the optimum total flowrate is 
relatively insensitive to the way in which the Bow is 
ducted. Of special interest is the fact that when TH/Tc 
= 100 the two-stream continuous cooling method 
requires less coolant than the one-stream method (Fig. 

14). In a helium refrigeration cycle, the coolant stream 
&cP is bled from the fow tem~rature end of the cycle 
and is ducted toward cooiing both the insulating jacket 
and the main counterflow heat exchanger. The 
continuous cooling of the main counterflow heat 
exchanger is effected by augmenting the Bowrate on the 
low pressure side relative to the flowrate on the high 
pressure side of the heat exchanger [7]. 

STRUT I STRUT 2 

FIG. 10.Qualitativedrawingshowingthetemperaturedistributioninpartly-cooIedparaIlel-insulationsystem. 



Thefundamentalresultofourstudyisthefactthatfor i?om one cooling method to anothsr. tlilai and I<+>:# 

maximum exergy conservation parallel-insulation 161 constrained only one leg of the p;ll-;lllet-insul;rtioli 
systems must be cooled ~ct,rtinuclu.\~~', as in Fig. 2. system. namely. the i~~sulatil~~ jacke? 
Despite their relative simplicity. intermittent waling 
arrangements oftht: type shown in Fig. 6 cannot match KEI’EKE1C’i~.X 
the thermodynamic performance of the continuous- 
cooling arrangement. This conclusion invalid:ltcs the I. A. Hqan, A geneml ~arlall~~ll;ll prlnclplc i;)l !lli‘l.iil.li 

claim made recently by Hilal and Eyssa /6). \s ho 
insulations~strmdcsign, /0/..1. ffwr 4fovi ‘f’r~rrlt~c~22.71’~ 
i IO701 

(hence. its end-to-end thermal conductance) v;iried York (19X01 

EC’ONOMIE D’ENERGIE DANS LES SYSTEMES EN PARALLELE D’ISOLA-I’lOF 
THERMIQrJE 

R&mm6 On &die par Ia seconde loi les systttmes d’isolation thermique composG de deux isolatwns 
monodimensionnelles en paraiiile. On montre que le modtile s’appliquc aux syst6mes de puissance ct de 
rtfrigtration rxpos&s i de grands rapports de temperatures absolues. Le systeme qui conserw I’&nergie au 
maximun (travail disponible) est d&erminC pour deux classes de systkmes : dans une claw, les deux is&lions 
en parallile sont refroidies continuemcnt pardeux i-coulements,dans I’autre elles sent refroidies particllement 
(de facon intermittentejpar un Ccoulement defluidemonophasiyue. L’ktude montreque, contrairement i des 
r~sultatsprCc~demmentpublit-s,lamtthodederefroidissementcontinuest therm~~dynamiquemen~ sup&rieure 

ti la m6thode de refroidissement partiei. 

des Flui~t.W~~rmcicitcr-Svi;tems mitdcm gering.stcn Vcrlust an Excr-gic(technisch verfii&arcrArheit) tjcrd~n 
ffir rwei Kchlkonzente crmittclt : 1, Bei& Wiirmeleitcr werdcn \on zwei paralfcfcn Str6mcn (Fill-f’h~lscn- 
Fluid) kontinuierlicl; gckiihlt. 2. Sic werdcn van einem (iihcrwechselndcn) Strom je nur7um Teil gckiihlt. DIG 
Arbcit kommt zu dcm SchluD, da0 cntgepen unlCngst hicrru cerGffentlichten Erpehmsscn <iUIKh 
kontinuierfiche Kiihlung griiflere Eucrgic~in~parunge,r als dtrrch teilwcisc (att~set~cndc) Kiihlur,~ /t! 

zrrrichcn sind. 
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