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Abstract—This paper is a Second-Law study of thermal insulation systems consisting of two 1-dim.
insulationsin parallel It isshown that the parallel-insulation model applies to power and refrigeration systems
exposed to large absolute temperature ratios. The insulation design which conserves maximum exergy
(available work) is determined for two classes of parallel-insulation systems: in one class, the two parallel
insulations are cooled continuously by two streams, in the other class they are cooled partly (intermittently) by
one stream of single-phase fluid. The study shows that, in contradiction to previously published results, the
continuous-cooling method is thermodynamically superior to the partial-cooling method.

NOMENCLATURE

A, cross-sectional area normal to insulation heat
current Q;

¢, specific heat at constant pressure;

k, effective thermal conductivity of the 1-dim.
insulation;

L, insulation thickness {length of heat current
path);

m, coolant mass flowrate;

dimensionless flowrate, equation (7);

entropy generation number, equation (8);
N, number of heat transfer units of the
counterflow heat exchanger;

cold-end heat current;

hot-end heat current;

local value of heat current;

entropy generation rate [W K~ 17];

T, absolute temperature;

Te, cold-end temperature;
Tex. temperature of cross-over point (Fig. 6);
Ty. hot-end temperature;

x, fraction of coolant flowrate (Fig. 2);
z,  position along the 1-dim. insulation (Fig. 1).

Greek symbols
£, dimensionless cross-over location, equation

(13).

Subscripts
c.h.e., counterflow heat exchanger;
min, minimum ;
opt, optimum
{ )1, pertaining to insulation no. 1;
{ )2, pertaining to insulation no. 2.

INTRODUCTION

THERMAL insulation systems occupy an important role
in the engineering of energy efficient systems for power
and refrigeration. The importance of insulation

1 Visiting from the University of Stuttgart, West Germany.
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systems is enhanced in applications which face extreme
absolute temperature ratios, for example, in advanced-
cycle power plants and in cryogenic gas liquefaction
installations. The traditional view in the design of
thermal insulation systems is that these systems’ basic
function is to prevent (limit) the flow of heat between the
ambient and the heart of the apparatus to be insulated.
An alternative, more comprehensive, way of viewing
insulation systems is to recognize that they are steady
dissipators of available work {exergy, availability), in
other words, steady producers of entropy. This second
view was proposed by one of the authors [1] who
showed that the accounting for exergy destruction in
insulation systems is the only avenue toward the design
of truly {thermodynamically) efficient power and
refrigeration systems.

Thermal insulations owe their dissipative character
to the thermodynamic irreversibility associated with
heat transfer across finite temperature differences [2].
Thus, in a I-dim. insulation of effective thermal
conductance kA/L{Fig. 1), the entropy generation rate

is [1]
Tn
Sgen = J (Q/THdT ity

Tc

where Ty, T- are the extreme temperatures and 0, is the
heat current from Ty to T As shown in the present
treatment, the heat current Q, is, in general, a function
of position z along the insulation. The heat current
function @, depends on the amount of intermediate
cooling provided to the insulation between z = 0 and
z= L. In Fig. 1, the intermediate cooling effect is
symbolized by the single-phase stream rc,, which cools
theinsulation in countercurrent with the heat flow 0. It
has been shown that the destruction of exergy in the
I-dim. insulation is minimized when the coolant
flowrate is [ 1]

(1€ popy = (Ak/L) In(Ty/ To). 2

PARALLEL INSULATION SYSTEMS

The objective of this paper is to analyze the
destruction of available work in paratle! insulation
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Fi. 1. Schematic of 1-dim. continuously-cooled thermal
insulation system. showing internal heat transfer.

systems, as shown in Figs. 2 and 6. The parallel-
insulation model recognizes the fact that in many
power and refrigeration systems the insulation effect is
provided by two separate installations. For example. in
a helium liquefier we first distinguish an elaborate
insulating layer which consists of radiation shields.
evacuated space and low-heat-leak mechanical
supports [3]. The second, more subtle, insulation
feature is the main counterflow (regenerative} heat
exchanger which connects the room temperature
compressor with the low temperature end of the
liquefaction process [4]. This heat exchanger leaks heat
in the (hot end)~{cold end) direction, in the same sense
as the 1-dim. insulation sketched in Fig. 1. It has been

shown that the equivalent cnd-to-end thermal
conductance of a balanced counter-flow heat
exchanger (chejis 1]

(kALY ye. = M0, Ny, i3

where #ic, is the capacity rate and N,, the number of
heat transfer units. The end-to-end conductance
decreases as the stream-to-stream conductance{or N, )
increases.

Counterflow heat exchangers play a thermal
insulation function not only in cryogenic systems but
also in advanced power cycles (e.g. the Brayton cycle
with regenerative heat exchanger [5]). The analogy
between counterflow heat exchangers and traditional
insulations, equation (3), justifies thc parallel-
insulation model employed in this study {Figs. 2 and 6).
In this model, one insulation (k, A, L) represents the
physical insulating layer (shields, vacuum, supports).
while the second insulation (k,, 4, L,)accounts for the
role played by the counterflow heat exchanger.

In what follows we consider the engineering question
of how to minimize the destruction of exergy in a
parallel insulation system, by properly using one
stream of cooland, mic,,. In the first part of the study we
focus on the arrangement shown in Fig. 2, where
fractions of Hic, are in continuous thermal contact with
each of the two insulations. In the second part we
consider the method of Fig. 6 in which the available
stream (#ic),) cools both insulations without being

fractioned into two substreams. Foy both methods we
determine the optimum operating conditions which
guarantee the destruction of least exergy. We then
compare the relative merits of the twoe methods; the
purpose of this discussion is 1o verrect previoush
published results [6] which wrongly ~uggest that 1
discrete cooling of parallel insulations

dynamically superior to continuous cosling.

s thermo-

TWO-STREAM CONTINUIOUS {OULING

The insulation system considered 153 this section i
shown in Fig. 2. The two insulations are positionad
between the same extreme temperatures {74 5 wid
are being cooled continuously by fractions vandi ! -
of a total gas stream nic,. Applying the Sceond Faw o
Thermodynamicsto thetwo cross-hatehed arcas which
bouse the thermodynamic irreversibility. we obtam ihe
rate of entropy generation for the sntirs system
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The heat current notation employed i equation i3
defined clearly on Fig. 2. The two streams xake, and
(1 —x)me, are in local thermal cquilibnium with
their respective insulations. Invoking the relation-
ship between heat current, thermal conductance and
local temperature gradient,
0.ty 5
e dz 1
the entropy generation rate can be writien in terms of
geometric parameters. Omitting the ensuing algebra
the final expression s
S we, [y 1) - 1]
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Fii. 2. Schematic of parallel-insulation xvstem vooled

continuously by two parallel streams,
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In this expression, M, and M, are the dimensionless
capacity rates corresponding to the two insulations,

M, = (mcp'Ll)/(klAl)’ M, = (mchz)/(k2A2)~ (7

1t is convenient to express the entropy generation
rate in dimensionless form also, by defining the entropy
generation number Ny

Ng= (SgenLl/klAl) =M [(T/To)—1]
x [{[1 ~(To/ e *Tx /(e ~ 1)}
H{[1 = (Te/ e 711 =) 70— )]
+M, In{Ty/To). &)

The N¢expression (8) is the object of minimization. For
a given absolute temperature ratio 7,/ T¢ and a given
conductance ratio

M,/M, = (kA/L),/(kA/L),, ©)

we must optimally select the two remaining
parameters, the flow fraction x and the mass flowrate
M (or M,). The standard analytical method of setting
equal to zero the partial derivatives, dNg/0x and
ONg/6M,, yields two implicit equations. Since the
solution to this system requires about the same
numerical effort as searching for the Ny minimum
directly, we minimized Ng by trial and error.

The results of our Ng minimization work are
reported for T/ T values of 10 and 100, which represent
very well helium-cooled insulations. We varied the
conductance ratio M,/M, from 0.1 to 10, and
determined the optimum x and M for minimum Ny,
Figures 3 and 4 show the minimum entropy generation
number Ng .., and the optimum flowrate number
M . as functions of the insulation conductance ratio
M,/M,. Both Ng and M, scale with the thermal
conductance of insulation no. 2. Since higher values of
M /M, correspond to more heat leaking into the
system, Ng ... and M, ., increase as M, /M, increases.
Increasing the absolute temperature ratio T/ T has the

100

NSMIN

o1 70 100

M, 1M,
Fi6. 3. Minimum entropy generation mumbers for continuous

cooling (solid lines) and intermittent cooling (dashed lines) of
parallel-insulation systems.
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F16. 4. Optimum mass flowrates for continuous cooling (solid
lines) and intermittent cooling (dashed lines) of parallel-
insulation systems.

same effect. However, increasing this ratio from 10 to
100 leads to an increase in N ;. by only a factor of
order 4 (instead of by a factor of 10 as in the case of
insulations without lateral stream-cooling effect).

The optimum flow fraction x was found to vary
antisymmetrically with respect to log(M,/M,) = 0.
This result has been plotted in Fig. 5. As we might have
expected, the optimum fraction is x = 0.5 when parallel
insulations are identical (M,/M, = 1). When the two
insulations differ drastically, the one with the higher
thermal conductance demands most of the coolant
supply. It can be shown analytically (based on Ng/dx
= ONg/6M = 0) that the optimum x is also a function
of the temperature ratio 7;/7.. This dependence,
however, is too weak to become visible in Fig, 5.

SINGLE-STREAM INTERMITTENT COOLING

A parallel-insulation system of superior technical
simplicity is shown in Fig. 6. This system employs only

1.0

T/ T =10, =100

O . : L
03 1.0

100
M,/ M,

Fic. 5. Optimum flow fraction vs support conductance ratio
for parallel continuous cooling scheme.



33R W. ScHuLTZ and A. BEiax

A‘ ﬂ T
LoTe [ el
Ky
K ' T—;,‘ zZ
2., Tex .
ad
T —
oT o D B
Q. m,co Q.;

F1G. 6. Schematic of parallel insulation system partly cooled by
one stream.

one stream {mc,) which comes in contact with the lower

part of insulation no. 1 up to a thickness z = z,. and
with the upper part of insulation no. 2fromz = z,to z

= L,. Thestream temperature at the cross-over point is
Tex- The stream comes in contact with insulation no. 2
at the point where the insulation temperatureisequal to
Tex : this cross-over design is the most reasonable {least
irreversible).

The total rate of entropy generation of this system is,

Seen = J‘ (dQ/TY+ Qe 1/ Te)—(Qy/ T
¢

g
o

e

QI T)+ Qs T —(Qua/ ) (10)

where the heat current terminology has been defined in
Fig. 6. It can easily be shown that the heat currents at
the stream-cooled ends of the two insulations are given
by
QCI = M(‘pT({[('I(R,T()— l]/‘(eMtil - ”} “ ])
Qus = i, Teg [T/ o) — TI/(EM01 8 phiatt = <0
{12y
where
(3)

Gr=zyLy. =yl

are the dimensionless cross-over locations. As in the
preceding section, M, and M, are the mass flow
numbers defined in equation (7). The heat currents at
the two uncooled ends of the insulations are given by

Ony = Ttk AL —(Tee/ T/ =D} (14)
Qcy = Tidky Ay LW [(Teg/ Te) =11/ (1)

Introducing equations (11}+15) into equation (10), and
performing the integrals in equation {10), yields, after
some algebra,

Ny =M [(Tep/Te)—1]
AL M — D]+ [ 1AM E)1)

+ M [(Towi T~ 1]
x ;f}r“ _esz(l ":3))] - l’,‘[‘l‘)w!” _ \I”’

H

+ M, In(h/ T (16
The entropy generation number N is defined as in the
preceding section [equation (8}].

The cross-over temperature I, appearing in
equation (16) may be eliminated based on the following
condition of heat current continuity. Considering
insulation no. 1. the constant heat current through the
uncooled part, Qy,,. must be cqual to the heat current
into the upper end of its cooled part. Therefore, we can
write

Ttk A LT = Teg/ T U — )

= T [T T)— 1] e 17y

Or
Tow/Te = [M {1 S+ B THY 0 )

M =0T (18

The same condition applied to insulation no. 2 viclds
T/ Te = [ 2 Ty TOM,E, — 1)

=[eM S ML -1 U9

Eliminating T/ 7. between equations (18) and (19)
leads to an implicit relationship between the cross-over
locations of the two insulations

e MuEnyLeMH T M M1 -2 1] 120)

Sp=1{1-

The temperature ratio T/ 7. and the conductance
ratio M /M , are known. Conscquently, equations {16},
(18) and (20) enable us to calculate the entropy
generation number as a function of two independent
parameters &, and M, The minimum entropy
generation number was determined numerically by
trial and error. Figures 3 and 4 show N and M,
as functions of M /M, and Ty/ 7. Asin the system of
Fig. 2, higher values of M /M, and 1,/ T, lead to higher
values of Ng ., and M, .. The optimum cross-over
locations &, and &, arereported in Figs. 7and & ;in these

1.0 1

5 OFT
f20p7

o1 10
YN
Fi6. 7. Optimum cross-over locations vs support conductance
ratio { T,/ Te- = 10
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Fig. 8. Optimum cross-over locations vs support conductance
ratio (T/ T = 100).

figures the arithmetic mean of &, and &, shows an
antisymmetric variation relative to log{M ,/M,) = 0. If
insulation no. 2 houses the dominant heat leak, ie. if
M, « M, thenitmust becooled over most of itslength.
The reduced cross-over temperature T/ T is shownin
Fig. 9 as a function of M,/M, and T/ T:.

In contrast to the fractioned-flow system considered
earlier, the temperature ratio T,/ T has a sizeable effect.
Figures 7 and 8 show that the greater the ratio T/ T,
the greater the displacement between cross-over
locations, ¢, —¢,. Note that the difference &, —¢, is
always positive, because the upper-section temperature
gradient is greater in a stream-cooled section thaninan
uncooled section. This effect is shown in Fig. 10, which
isa qualitative sketch of the temperature distribution in
two parallel insulations of the same length.

DISCUSSION

We are now in a position to assess the relative
thermodynamic merit of the parallel-insulation designs
proposed in Figs. 2 and 6. Both designs have been
optimized thermodynamically by determining the
operating conditions which insure minimum destruc-

TEMPERATURE
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Fic. 9. Optimum cross-over temperature vs support
conductance ratio.

tion of exergy in the given system. Figure 3 shows that
the single-stream system (Fig. 6} is thermodynamically
inferior to the two-stream system({Fig. 2). The difference
between the minimum entropy generation numbers
increases as the temperature ratio T/T. increases.
Therefore, the two-stream arrangement is particularly
desirable in helium cryogenic systems, where the
temperature ratio is of order 100.

The optimum cooling requirements for the two
cooling methods are summarized in Fig. 4. This
summary shows that in the (T,/T;)—(M,/M,) range
considered in our study, the optimum total flowrate is
relatively insensitive to the way in which the flow is
ducted. Of special interest is the fact that when T,/ Tg
= 100 the two-stream continuous cooling method
requires less coolant than the one-stream method (Fig.
14}. In a helium refrigeration cycle, the coolant stream
#ic, is bied from the low temperature end of the cycle
and is ducted toward cooling both the insulating jacket
and the main counterflow heat exchanger. The
continuous cooling of the main counterflow heat
exchanger is effected by augmenting the flowrate on the
low pressure side relative to the flowrate on the high
pressure side of the heat exchanger [7].

STRUTH STRUT 2

Fic. 10, Qualitative drawing showing the temperature distribution in partly-cooled parallel-insulation system.
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The fundamental result of ourstudy is the fact that for
maximum exergy conservation parallel-insulation
svstems must be cooled continuously, as in Fig. 2.
Despite their relative simplicity, intermittent cooling
arrangements of the type shown in Fig. 6 cannot match
the thermodynamic performance of the continuous-
cooling arrangement. This conclusion invalidates the
claim made recently by Hilal and Eyssa [6]. who
considered the thermodynamic optimization {excrgy
conservation design} of a large scale cryogenic system.
These authors addressed the same question as in our

study, namely, that of the best allocation and ducting of
cold fluid rc, between the two parallel insulations of

the system (1. the insulation jacket, and 2. the main
counterflow heat exchanger column). Hilal and Evssa
[6] concluded that, compared with the continuous
cooling method, the 'discrete (intermittenty cooling
method yields greater savings in refrigerator power
(exergy). Their conclusion is incorrect : the error stems
from the fact that in comparing various cooling
methods, they did not constrain the parallel-insulation
system. Specifically, the N, of the main heat exchanger
(hence, its end-to-end thermal conductance) varied

from one cooling method to another. Hilal and Evssa
[6] constrained only onc leg of the parallel-insulation
system, namely, the insulating jacket.
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ECONOMIE D'ENERGIE DANS LES SYSTEMES EN PARALLELE D'ISOLATION
THERMIQUE

Résumé-- On €ludie par la seconde loi les systémes d'isolation thermique composé de deux isolations
monodimensionnelles en paralléle. On montre que le modéle s"applique aux systémes de puissance et de
réfrigération exposés a de grands rapports de températures absolues. Le systéme qui conserve U'énergie au
maximun (travail disponible) est déterminé pour deux classes de systémes : dans une classe, les deux isolations
en paralléle sont refroidies continuement par deux écoulements, dans lautre elles sont refroidies particllement
{de fagon intermittente) par un écoulement de fluide monophasique. L'étude montre que, contrairement & des
résultats précédemment publiés, la méthode de refroidissement continu est thermodynamiquement supérieure
4 la méthode de refroidissement partiel.

EXERGETISCHE OPTIMIERUNG DER FLUIDKUHLUNG PARALLELER WARMELFITER

Zusammenfassung - Mit Hilfe des zweiten Hauptsatzes der Thermodynamik wird der Exergicveriustin zwey
parallelen fluidgekithiten Wirmeleitern untersucht. Es wird gezeigt, dall das Modell paralleler
eindimensionaler Wirmeleiter auf Wirmekraft- und Kélteprozesse anwendbar ist. Die Betricbsbedingungen
des Fluid-Wirmeleiter-Systems mit dem geringsten Verlust an Exergie (technisch verfligbarer Arbeit) werden
fiir zwei Kiithtkonzepte ermittelt: 1. Beide Wirmeleiter werden von zwei parallelen Stromen (Ein-Phasen-
Fluid) kontinuierlich gekiihlt. 2. Sie werden von einem ({iberwechselnden) Strom je nur zum Teil gekdhit. Dic

Arbeit kommt zu dem SchluB3, daB

entgegen unlingst hierzu verdffentlichten Ergebnissen

durch

kontinuicrliche Kithlung eréBere Exergiccinsparungen als durch teilweise {aussetzende) Kithlung 7u
crreichen sind.

COXPAHEHUE SHEPTMH B CUCTEMAX TAPAJUJIEJIbHON TEMJIOBOM
M30JIALINN

AHHOTaIMA — B HacTosiueii paboTe NPOREJEHO HCCICAOBAHHE OHOMEPHBIX fIBYXCTONRHBIX CHCTCM
TERIIOBON W3O.ISUMH € YHETOM BTOPOTC 3aKOHA TepMOAHHAMHKA. TTOKA3AHO, 4TO MOJEE HAPAieie-
1Ol H30JAUNK NPHMEHHMA K YHEPTETHYECKHM H MODPO3HIbHBIM CHCTEMaM npu Soabumx abconoTHEX
liepenasax TeMiepatyp. KoHCTPYKLHMS #30.5IHMH, COXPaHAIOEH MaKCHMAaNbHYIO IHEPIHO (1i0e3Has
paboTa). onpeseieHa 1% ABYX KJACCOB CHCTEM NAPANICABHON H3OASUMH: B CHCTEMAX [CPROIO

KJacca B€ napaiciibHbIX H30IHLNAH

HEHPEPBIBHO  OXIAXKIAKOTCA

JBYMS HOTOKAMH. 8 CHCTCMax

APYroro KJ/acca OHM  OXJTaX TdHoTCA PasIciLHO (nonepeMemm) OAHHM  TIOTOKOM O)IHO(I)Z:I'}HOFI

suakoctH. Mecenosaius noOKA3biBAKT, YT0, BOIIPCKH paHee Oﬂy()JlHKOBaHl{blM pe3yibraraM. METOMH

HENPEPLIBHOTO OXJANKACHHA ¢ TOMKH 3PCHHA TEPMOJAHHAMHKY BbITOAHCC, YEM METO/L MOHCPOMEHHOI O
OXaXACHUS.



